\documentclass[12pt]{article}
\hoffset -2cm\voffset -2cm
%\topmargin -1cm
\textwidth 150mm \textheight 230mm
\usepackage{graphicx}
\usepackage{amsmath,amscd,amsthm,amssymb}
\allowdisplaybreaks[4]
\renewcommand{\baselinestretch}{1.45}
% ----------------------------------------------------------------
\vfuzz2pt % Don't report over-full v-boxes if over-edge is small
\hfuzz2pt % Don't report over-full h-boxes if over-edge is small
% THEOREMS -------------------------------------------------------
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\theoremstyle{remark}
\newtheorem*{rem}{Remark}
\numberwithin{equation}{section}
\newcommand{\LL}{\left}
\newcommand{\RR}{\right}
\begin{document}
\vspace {0.8cm}
\title{{ Existence of Bounded Nonoscillatory Solution of Higher
Order Neutral Differential Equations with Positive and Negative
Coefficients
}\thanks{Research are supported by
the Natural Science Foundation of Hebei Province and Main
Foundation of Hebei Normal University.}}
\author{ Zhenguo Zhang, Haiyan Liang, Qiaoluan Li \\
}
\date{}
\maketitle
\begin{minipage}{120mm}
{\bf Abstract:} {\small In this paper, by applying the fixed point
theorem and with the condition of $f_i\,\,(i=1,2)$ satisfying the
Lipschitz condition, we obtain the existence of bounded
nonoscillatory solution of the following higher order neutral
differential equations:
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=0, \eqno{(1.1)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=g(t),
\eqno{(1.2)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+\sum\limits_{j=1}^{m}q_{j}(t)x(\tau_{j}(t))=0,
\eqno{(1.3)}$$}
\vskip 0.0in
\noindent {\bf Keywords:} {\small Neutral differential equation,
Nonoscillation.}
\\
\noindent {\bf 2000MSC:}
34C10
\end{minipage} \vskip 0.2in
\begin{center}
{\bf 1. INTRODUCTION}
\end{center} \vskip 0.in
本文考虑具有正负项的高阶非线性微分方程
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=0, \eqno{(1.1)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=g(t),
\hoffset -2cm\voffset -2cm
%\topmargin -1cm
\textwidth 150mm \textheight 230mm
\usepackage{graphicx}
\usepackage{amsmath,amscd,amsthm,amssymb}
\allowdisplaybreaks[4]
\renewcommand{\baselinestretch}{1.45}
% ----------------------------------------------------------------
\vfuzz2pt % Don't report over-full v-boxes if over-edge is small
\hfuzz2pt % Don't report over-full h-boxes if over-edge is small
% THEOREMS -------------------------------------------------------
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\theoremstyle{remark}
\newtheorem*{rem}{Remark}
\numberwithin{equation}{section}
\newcommand{\LL}{\left}
\newcommand{\RR}{\right}
\begin{document}
\vspace {0.8cm}
\title{{ Existence of Bounded Nonoscillatory Solution of Higher
Order Neutral Differential Equations with Positive and Negative
Coefficients
}\thanks{Research are supported by
the Natural Science Foundation of Hebei Province and Main
Foundation of Hebei Normal University.}}
\author{ Zhenguo Zhang, Haiyan Liang, Qiaoluan Li \\
}
\date{}
\maketitle
\begin{minipage}{120mm}
{\bf Abstract:} {\small In this paper, by applying the fixed point
theorem and with the condition of $f_i\,\,(i=1,2)$ satisfying the
Lipschitz condition, we obtain the existence of bounded
nonoscillatory solution of the following higher order neutral
differential equations:
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=0, \eqno{(1.1)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=g(t),
\eqno{(1.2)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+\sum\limits_{j=1}^{m}q_{j}(t)x(\tau_{j}(t))=0,
\eqno{(1.3)}$$}
\vskip 0.0in
\noindent {\bf Keywords:} {\small Neutral differential equation,
Nonoscillation.}
\\
\noindent {\bf 2000MSC:}
34C10
\end{minipage} \vskip 0.2in
\begin{center}
{\bf 1. INTRODUCTION}
\end{center} \vskip 0.in
本文考虑具有正负项的高阶非线性微分方程
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=0, \eqno{(1.1)}$$
$$(x(t)-p(t)x(\tau(t)))^{(n)}+f_{1}(t,x(\sigma_{1}(t)))-f_{2}(t,x(\sigma_{2}(t)))=g(t),