-
-
1用DNA取代传统的电脑元器件储存、读取信息有诸多缺点,那如果用其他长链+挂坠式的高分子有机化合物呢?
-
0
-
6一篇稿子的命运,质量是录用的前提;而外审的客观评价,则是影响稿子录用的关键因素。外审认为孺子可教,那就会录用,外审认为朽木不可雕,那就不会录用,就是这么简单。 所谓的关系稿,和直投稿,道理是相通的。关系稿能加快或一定程度影响外审直接认为孺子可教,这并不完全客观,有主观干预成分。而直投,则需要寻找到认为孺子可教的杂志和外审,劣势在于需要更多时间,而优势也很明显,则是客观公正公开。 去伪寻真,不造神话,
-
0
-
0求喜树基因数据库 有偿
-
0
-
0
-
0
-
0
-
0
-
0
-
0
-
0泛素修饰类型和靶蛋白修饰位点 泛素修饰类型和靶蛋白修饰位点如何鉴定泛素修饰类型和靶蛋白的修饰位点? 1. 使用HA-Ub-WT/KO泛素修饰系统检测修饰类型 步骤: HA-Ub-WT和HA-Ub-KO系统:使用HA标记的野生型泛素(HA-Ub-WT)和赖氨酸突变型泛素(HA-Ub-KO,如K6R、K11R、K27R等)载体,与泛素连接酶(E3)和修饰底物共转染细胞。 CoIP-WB检测:通过免疫共沉淀(CoIP)和蛋白质印迹(WB)检测底物的泛素化水平,明确E3连接酶对底物的泛素修饰类型。 小贴士: HA-Ub-K
-
0
-
0一、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯的结构相同*参数 Ex(nm) 696 Em(nm) 719 分子量 ~1400 溶 剂 DMSO 存储条件 在-15℃以下保存,避光防潮 反应基团 NHS酯 二、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯的结构相同*优势 1.易于结合:高效地将伯胺标记在蛋白质、抗体和胺修饰的寡核苷酸上 2.荧光明亮且稳定:在pH 4-10范围内荧光不受影响且光稳定性好 3.亲水性好:减少聚集,提高信号清晰度,适用于高级成像和活细胞研究 三、百萤AF700 NHS 酯 *与 Alexa Fluor 700 NHS 酯
-
0
-
0蛋白DNA互作组ChIP-Seq原理,要点,优劣势。 ChIP-Seq检测原理: ChIP-Seq检测原理和RIP-Seq类似,不同的是前者利用目的蛋白抗体将相应的DNA-蛋白复合物沉淀下来,然后分离纯化捕获DNA,结合高通量测序技术对目标DNA进行测序分析。 ChIP-Seq服务要点和RIP-Seq类似,精简如下: (1)试验设计:同RIP-Seq。 (2)蛋白表达和细胞量:比RIP-Seq细胞用量要求大,建议不少于10e7(金标准:320g离心沉淀100ul)。 (3)抗体关键质控:同IP-Mass和RIP-Seq。 (4)IP送样建议:细
-
0一、百萤 AF568酸 等同于Alexa Fluor 568acid参数 Ex(nm) 579 Em(nm) 603 分子量 807.74 溶剂 DMSO 存储条件 在-15℃以下保存,避光防潮 荧光颜色 红色 二、百萤 AF568酸 等同于Alexa Fluor 568acid适用范围 主要用于标记抗体、蛋白质和寡合苷酸 三、百萤 AF568酸 等同于Alexa Fluor 568acid概述 AAT Bioquest 生产的XFD 568 酸与AlexaFluor®568酸的分子相同,是一种明亮的红色荧光染料,在pH 4-10范围内荧光不受影响且光稳定性好。适用于多色荧光显微镜、流式细胞术和dSTORM等先进成像技术。
-
0PHLDA2与ALOX12相互作用 一、确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12复合体的存在。 二、确定PHLDA2和ALOX12互作特异性 PHLDA2属于PH样结构域家族A,包括PHLDA1、PHLDA2和PHLDA3(图1f)。Co-IP实验分析发现,PHLDA1、PHLDA2和PHLDA3中,只有PHL
-
0
-
0
-
0
-
0
-
0RIP-Seq原理,要点,优劣势 RIP-Seq检测原理: 细胞内蛋白RNA互作组RIP-seq检测,即免疫沉淀RNA结合测序分析检测。RIP-Seq检测原理和IP-Mass类似,不同的是前者利用目的蛋白抗体将相应的RNA-蛋白复合物(RBP)沉淀下来,然后分离纯化捕获RNA,结合高通量测序技术对目标RNA进行测序分析。 RIP-Seq检测要点: RIP-Seq服务要点和IP-Mass类似,但要求更高,精简如下: (1)试验设计:RIP-Seq强烈建议设置实验组别和生物学重复检测。 (2)蛋白表达和细胞量:比IP-Mass
-
0CoIP-Mass检测原理: 细胞内蛋白互作组CoIP-Mass检测,即免疫沉淀结合质谱分析检测,是研究细胞内蛋白互作的常规前置技术。 CoIP-Mass检测要点: (1)试验设计:尽量进行试验组别设计和进行生物学重复检测,提高后续验证的阳性率。常规过表达单组(Ab IP vs IgG IP);动态互作组学(实验组vs对照组vs Ig组)。根据目的设计适当的生物学重复。如果后续以IP-Mass数据进行互作组标准分析,则需要3-4组生物学重复;如果后续以寻找关键互作蛋白,进行机制深
-
0circCFL1直接与HDAC1互作 一、初步筛选出与circCFL1的互作蛋白分子HDAC1 为了阐明circCFL1对TNBC影响的潜在分子机制,进行RNA pull down实验,对显著富集的55 kD蛋白进行质谱分析(图1a),发现HDAC1是circCFL1的高潜蛋白(图1b)。分子对接显示circCFL1与HDAC1蛋白存在物理结合(图1c)。 二、确定circCFL1与HDAC1存在互作 FISH和IF检测发现circCFL1和HDAC1在细胞核中共定位(图1d)。RNA pull down-WB实验证实circCFL1和HDAC1相互作用(图1e)。 三、确定circCFL1与HDAC1结合的特定区域 首
-
0
-
0PHLDA2与ALOX12相互作用 一、确定ROS铁死亡系统的相互作用分子 通过SFB标签抗体,进行IP-MS和IP-WB发现PHLDA2与ALOX12互作(图1a、b)。进一步通过内源抗体Co-IP双向验证PHLDA2与ALOX12存在相互作用(图1c-d)。而免疫荧光共定位实验发现PHLDA2和ALOX12能够同时共定位于细胞质(图1e),进一步佐证了PHLDA2-ALOX12复合体的存在。 二、确定PHLDA2和ALOX12互作特异性 PHLDA2属于PH样结构域家族A,包括PHLDA1、PHLDA2和PHLDA3(图1f)。Co-IP实验分析发现,PHLDA1、PHLDA2和PHLDA3中,只有PHL
-
0
-
0
-
0
-
0
-
0
-
0
-
0
-
0第一步,筛选CARM1的互作蛋白 通过anti-Flag-CARM1 IP-MS鉴定与CARM1相互作用的蛋白,分析显示CARM1与HIF1A存在关联(图1a)。 第二步,验证CARM1与HIF1A相互作用 在常氧和缺氧条件下,进行Co-IP分析,CARM1和HIF1A相互作用(图1b-e)。此外,GST pulldown实验也证实CARM1与HIF1A互作(图1f-g)。 第三步,确定CARM1与HIF1A互作具体位置 构建截短载体GST-CARM1-EVH1结构域(1-140 aa)、GST-CARM1-cat(141-480 aa)和GST-CARM1-c(481-608 aa),进行GST pulldown实验,表明CARM1的EVH1结构域负责与HIF1
-
0迄今,临床上仍有大量疾病缺乏安全有效的治疗药物。因此,药物创新研究的重要性日益凸显。中药虽然在临床预防治疗复杂疾病方面具有其特色和优势,但是中药有效成分及其作用靶点、机制不明确等问题仍然是中药现代化的阻碍因素,也是中药发展和走向世界的主要瓶颈之一。 2022年8月,北京大学药学院屠鹏飞/曾克武团队在Science Advances(IF=11.7)上发表题为“Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease thera
-
0
-
0
-
0
-
0THC结合TRIP13抑制TRIP13/USP7/c-FLIP三元复合物相互作用介导c-FLIP泛素化 研究THC处理后TRIP13、c-FLIP和USP7之间的相互作用。Co-IP实验显示c-FLIP、TRIP13和USP7直接结合在一起,THC抑制了它们在TNBC细胞中的结合能力(图3f)。此外,分子对接和分子动力学分析表明,USP7、TRIP13和c-FLIP形成三元配合物,其中TRIP13是连接c-FLIP和USP7的桥梁;THC通过与ASP89和ASP84的氢键与TRIP13相互作用(图1g)。另外,THC的加入削弱了USP7、TRIP13和c-FLIP之间的总结合能和氢键相互作用(图1h-i)
-
0
-
0
-
0
-
0
-
0
-
0ChIRP-MS和RNA pulldown-WB实验,发现AZGP1, DSG1和KRT16证明与circNOLC1存在互作(图1a-c)。因AZGP1在CRC中高表达,且在葡萄糖代谢中发挥重要作用,故将其作为研究对象。RIP实验发现circNOLC1在anti-AZGP1下拉物中显著富集(图1d)。为了确定circNOLC1与AZGP1互作区域,设计circNOLC1缺失突变体,进行RNA pulldown实验,表明circNOLC1的nt 91-150是circNOLC1与AZGP1相互作用必需的(图1e)。 进一步检测发现,circNOLC1仅调控AZGP1蛋白水平,用蛋白酶体抑制剂处理细胞显示MG132显著提高AZGP1